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a b s t r a c t 

The effective reproduction number ( R ) which signifies the number of secondary cases infected by one in- 

fectious individual, is an important measure of the spread of an infectious disease. Due to the dynamics 

of COVID-19 where many infected people are not showing symptoms or showing mild symptoms, and 

where different countries are employing different testing strategies, it is quite difficult to calculate the 

R , while the pandemic is still widespread. This paper presents a probabilistic methodology to evaluate 

the effective reproduction number by considering only the daily death statistics of a given country. The 

methodology utilizes a linearly constrained Quadratic Programming scheme to estimate the daily new 

infection cases from the daily death statistics, based on the probability distribution of delays associated 

with symptom onset and to reporting a death. The proposed methodology is validated in-silico by sim- 

ulating an infectious disease through a Susceptible-Infectious-Recovered (SIR) model. The results suggest 

that with a reasonable estimate of distribution of delay to death from the onset of symptoms, the model 

can provide accurate estimates of R . The proposed method is then used to estimate the R values for two 

countries. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The basic reproduction number R 0 , which is the mean num-

er of secondary cases generated by a typical infectious individ-

al in a fully susceptible environment [1] , is an established mea-

ure within the circles of epidemiology. The effective reproduc-

ion number (R), on the other hand, is the average number of

econdary cases per infectious case in a population made up of

oth susceptible and non-susceptible (immune) hosts [2] . Meta-

nalysis of existing estimates of basic reproduction number for

OVID-19 ranges from 1.9 to 6.5, with most studies agreeing of a

alue between 2 and 3 [3] . The knowledge of R 0 or R, provides

he basis for further inference of different dynamics such as the

ffects of suppression policies adapted by different governments.

his measure is often associated with compartmental models that

imulate the outbreaks and spread of diseases. These models are

ommonly referred to as Susceptible-Infectious-Recovery (SIR) or

usceptible-Exposed-Infectious-Recovery (SEIR) models. Such mod- 

ls have been extensively used to model the current pandemic on

OVID-19 [ 4 , 5 ]. 
✩ A reproduction code for all the methods used in the paper is provided through 

itHub. https://github.com/JJJJJamie/r _ estimation . 
∗ Corresponding author. 

E-mail address: v.d.de-silva@lboro.ac.uk (V. De Silva). 
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Using COVID-19 data on cases in Wuhan and international cases

hat originated from Wuhan, Kucharski et al. [4] estimated median

aily reproduction number (R) using astochastic transmission dy-

amic model (using SEIR compartments). Delays from symptom

nset to reporting and uncertainty in case observation were ac-

ounted for in the model. Disease transmission was modelled as a

eometric random walk process and sequential Monte Carlo simu-

ation estimated the transmission rate over time, number of cases

nd the time-varying R. Zhang et al. [6] estimated R 0 in the early

tage of COVID-19 outbreak on the Diamond Princess cruise ship.

he R0 distribution was attained from the Maximum Likelihood es-

imation using a function in R and a bootstrap strategy was used to

et a set of plausible R 0 values. A case-specific model for COVID-19

alled θ-SEIHRD was proposed by Ivorra et al. [7] , which is a deter-

inistic model expanding on an existing SEIR model by including

he additional new components: infectious but undetected; hos-

italized or in quarantine at home that will recover; hospitalized

hat will die; and dead by COVID-19. The model also divides the

ecovered component into two: recovered after previously being

etected as infectious and recovered after previously being infec-

ious but undetected. 

There are few studies that use other mathematical approaches

han SIR or SEIR to estimate R or R 0 . Diekmann et al. [8] defined

 0 as the dominant eigenvalue of Next Generation Matrices (NGM)

or compartmental systems. The paper concluded that R > 1 if and
0 

https://doi.org/10.1016/j.chaos.2020.110181
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110181&domain=pdf
https://github.com/JJJJJamie/r_estimation
mailto:v.d.de-silva@lboro.ac.uk
https://doi.org/10.1016/j.chaos.2020.110181
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Fig. 1. Different categories of COVID-19 patients. Depending on the testing strategy of a country, only certain categories of patients may be tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Illustration of probability density functions for d iso and d iso−death used in the 

current study. The parameters of the distributions are used from [11] . 
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only if the real time exponential growth rate in the early stage of

outbreak (r) > 0 and R 0 = 1 if r = 0. A graph theoretic form of gaus-

sian elimination model was proposed in [9] to calculate the basic

reproduction number. Using mortality data to calculate R values is

also an interesting approach, which was demonstrated in applica-

tion to the 1918 influenza pandemic in [10] . 

The objective of this study is to approximate the effective re-

production number (R) of an infectious disease, such as COVID-19

in a population, given the daily statistics released by authorities,

as well as considering various studies that have been published on

the early dynamics of COVID-19. This paper proposes a data-driven

probabilistic method to approximate the R value of COVID-19, by

utilizing the daily death statistics, and utilizing statistical studies

on early dynamics of Covid-19. 

2. The methodology 

The objective of the proposed methodology is to approximate

the effective reproduction number of any mortal infectious disease

such as COVID-19, during the course of the pandemic, by utilizing

the daily death statistics. The proposed model predicated on the

basis that when the healthcare capacity is not reached in a coun-

try, the death rate (or the case-fatality ratio) from Covid-19 is a

constant. 

The proposed model considers the patient journey, and differ-

ent patient types who are infected by the COVID-19 virus as de-

picted in the Fig. 1 . A person can be infected with the virus but

show no symptoms at all. There is a delay between some person

becoming infectious till the onset of symptoms. At this point, the

person is expected to be isolated and not infect any more peo-

ple. Furthermore, there is a delay between an isolated person that

has been reported, and the death of a person. The process that a

person goes through from infection to recovery from Covid-19 is

illustrated in Fig. 1 . 

There are two main components of the proposed methodol-

ogy to calculate the effective reproduction number. Firstly, the es-

timation of number of cases infected in a given day, to include

those who are reported/confirmed with COVID-19, those who have

symptoms and isolate, and those who do not have symptoms. Sec-

ondly, the calculation of effective reproduction number for each

day from the number of people infected per day. The following

subsections explain these components in detail. 

The proposed measure to approximate effective reproduction

number, denoted as R, is explained in the following sections. The

effective reproduction number is defined as the average number of

secondary cases infected by one person. In the following sections

we derive the formulae for calculating the R for any given day. 
The derivations in the proceeding subsections are based on the

ollowing definition of terms. 

• N ( t ) : number of newly infected cases on day t 

• D ( t ): daily reported death numbers in a country 

• N cum 

( t ): number of total infected cases up to day t 

• d iso : delay from infection to isolation, represented as a gamma

distribution, �( α = 1 . 35 , β = 

1 
0 . 27 ) , where α and β are the

shape, and scale parameters, respectively [11] . 

• d iso −death : delay from isolated with symptoms to death, is rep-

resented as a gamma distribution, �( α = 4 . 9 , β = 

1 
0 . 26 ) [11] . 

• d death : delay from infected to death is the total delay from in-

fected to isolation, and from isolation to death. 

The delay to isolation (or onset of symptoms) d iso and delay to

eath from isolation d iso−death distributions that are used in this

tudy are illustrated in Fig. 2 . 

P d ( t ): probability that a person infected with the Covid-19 virus

ill die. This is commonly referred to as the mortality rate of the

isease or the case-to-fatality rate. The mortality rate (death rate

 case-fatality ratio) can be considered fixed when the healthcare

apacity is not reached in a given region. The current values re-

orted in literature varies significantly from around 0.001 to 0.12,

ith a bias towards lower estimates. In our experiments, we used

eath rates (Case-fatality ratio) of 0.0025, 0.03 and 0.1. 

t fd : the first day that new deaths reported is > 10. 
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Fig. 3. Model Validation: (a) The variation of simulated R(t) value, and the R(t) value estimated from the proposed model, (b). 
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.1. Estimation of number of cases infected in a day 

Based on the delay to death distribution d death , the minimum

eath delay (min [ d death ]) and maximum death delay (max [ d death ])

re assumed to be the 1% quantile and 95% quantile of d death re-

pectively. The expected deaths for the t th day, denoted as E [ D ( t )]

or t ≥ max [ d death ] can be calculated by 

 [ D ( t ) ] = 

t−min [ d death ] ∑ 

i = t−max [ d death ] +1 

P d ( i ) ·N ( i ) · Pr ( t − i < d death ≤ t − i + 1 ) 

(1) 

In matrix form this corresponds to: 

�
 

 [ D ( t ) ] = M · � N ( t ) (2) 

Where M is made up of Pd and Pr values of Eq. (1) . 

The above equation suggests that, of those who contract the

irus on a day i , a certain fraction P d ( i ) , eventually die after a delay

f several days. The delay is governed by the distribution d death . 

To further explain the application of equation Eq. (2) , we as-

ume that min [ d ] = 7 , max [ d ] = 41 , and the daily death
death death 
ata is available from 41st day to 103rd day. Using the equation

bove, � E [ D (t) ] is a vector of length 63, M is a 63 × 96 matrix and
�
 

 (t) is a vector of length 96. E [ D ( t )] for t = 41 , . . . , 103 can be

alculated by: 

E [ D ( 41 ) ] = p d ( 1 ) · N ( 1 ) · P ( 41 ) + p d ( 2 ) · N ( 2 ) · P ( 40 ) 

+ · · · + p d ( 34 ) · N ( 34 ) · P ( 8 ) 

E [ D ( 42 ) ] = p d ( 2 ) · N ( 2 ) · P ( 41 ) + p d ( 3 ) · N ( 3 ) · P ( 40 ) 

+ · · · + p d ( 35 ) · N ( 35 ) · P ( 8 ) 

. . . 

 [ D ( 103 ) ] = p d ( 63 ) · N ( 63 ) · P ( 41 ) + p d ( 64 ) · N ( 64 ) · P ( 40 ) 

+ · · · + p d ( 96 ) · N ( 96 ) · P ( 8 ) 

Given deaths data D ( t ) for t = t 1 , . . . , t current , the estimation of

aily new infection 

˜ N (t) for t = t 1 − max [ d death ] + 1 , . . . , t current −
in [ d death ] can be found by minimizing the difference between

odel prediction E [ D ( t )] and the real daily death numbers D ( t ): 

˜ 
 = arg min 

˜ N 
( E [ D ( t ) ] − D ( t ) ) 

2 (3) 
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Fig. 4. The variation of R(t) estimation under different d iso−death distributions. 
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Fig. 5. The variation of R(t) estimation under different mortality rates (Pd). 
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This is a quadratic optimization problem, which can be solved

y using Quadratic Programming [12] . In our model, a linearly con-

trained Quadratic Programming was used to find the estimation

f daily new infection. To get a realistic estimation, several linear

onstraints for ˜ N (t) were added to the model, including boundaries

or the ratio ˜ N ( t + 1 ) / ̃  N (t) , the ratio ˜ N ( t + m ) / ̃  N (t) and cumulative

rowth rate N cum 

( t + 1 ) / N cum 

(t) for each day. 

Ideally, adding constraints on the dynamic of growth rate could

elp us find 

˜ N (t) with less oscillation and smoother in the long

erm. Therefore, none-convex quadratically constrained Quadratic

rogramming could potentially improve our estimation of daily

ew infection. 

.2. Calculation of effective reproduction number 

The expected value of effective reproduction number for the

ay t, denoted by E[R(t)], is estimated by the following equation: 
 [ R ( t ) ] = No . of Cases Infe cted by N ( t ) / N ( t ) (4) 

The R estimation in the method is performed daily according

o the Eq. (4) . The calculation of the numerator on Eq. (4) is not

traightforward. The newly infected patients on day t, denoted by

(t) in the denominator of Eq. (4) , will be continuously infectious

n future days until they are isolated or recovered. Consequently,

he number of newly infected cases on a given future date, would

ave been infected by all the people who are infectious on the pre-

ious days. However, the people who are infectious on the previous

ays, were first infected on different days in the past. Therefore,

he method should consider the proportion of people who are ex-

lusively infected by those who were first infected on a given date

N(t)). 

For this purpose, it is required to calculate the number of peo-

le infected in the previous days, and also account for those of

hom are no longer infectious due to self-isolation/hospitalization

r recovery. 
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Fig. 6. The variation of R(t) estimation under different noise levels on the death statistics. 
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The following paragraphs explain how this is calculated. 

Assuming N ( t ) is available for t = 1 , .., n , we define 
→ 

N 0 =
[ N (1) , . . . , N (n − 1)] and 

→ 

N 

= [ N (2) , . . . , N (n )] . 

The cumulative Infections matrix I , is defined to collate the

number of infectious cases on day i + 1 , who were infected on the

previous days. I is a lower triangular matrix of size n − 1 x n − 1 ,

where I [ i, j ] is the number of infectious cases on day i + 1 , who

were first infected on day j. We assumed that each infected case

becomes infectious on the next day. 

I [ i, i ] = N ( i ) f or i = 1 , . . . , n − 1 (5)

The rows of column j of the matrix I is defined by spreading the

infectious cases first infected on day j by using the gamma distri-

bution representing the d iso . 

The process for finding the values for I [ i, j ], where i > j is as fol-

lows. 
For each j = 1 , . . . , n − 1 , sample from d iso for N ( j ) times. The

amples from d iso are denoted by S = ( s 1 , s 2 , . . . .., s N( j) ) . 

 k ∼ �
(
α = 1 . 35 , β = 

1 

0 . 27 

)
(6)

here α is the shape parameter, and the β is the scale parameter

f the gamma distribution. 

If a sample s k from S is m − 1 < s k < m , this indicates that it

ook m days for this infected case to isolate. 

 [ i, j ] = I [ j, j ] − S C i − j (7)

Where SC r is the number of s k ∈ S, such that r − 1 < s k < r

The above sampling process is evaluated for 100 times and the

verage I is considered to calculate the effective reproduction num-

er. 

From the cumulative infectious matrix I , a weighting matrix W

s defined as below, where each element of the matrix W, W [ i, j ] is

efined as: 
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Fig. 7. The variation of R(t) estimation under different gaps from the most recent death data availability. The “true” delay from isolation to death is simulated as a gamma 

distribution with mean = 18.8, and shape = 4.94, and same distribution used in the method. 
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 [ i, j ] = 

I [ i, j ] ∑ n −1 
k =1 I [ i, k ] 

(8) 

 [ R ] = 

�
 N · W 

−→ 

N 0 

(9) 

The E [ R ] is a 1 × ( n − 1 ) array, representing the approximated

ffective reproduction number on days 1 to ( n − 1 ). The estimated

ffective reproduction number is denoted as R in the proceeding

iscussions. 

A Python implementation of the methodology is provided

hrough GitHub ( https://github.com/JJJJJamie/r _ estimation ). 

. Experimental results 

The results section is mainly organised in two parts. Firstly, pro-

osed model is validated against an SIR simulation and secondly,

e present results for reproduction number predictions for 2 se-

ected countries. 

.1. Model validation 

For the purpose of model validation, we simulate a disease out-

reak with an SIR model [13] , to estimate the number of infected

opulations under a varying R value over time. A certain fraction of

he infected population is simulated to die. Those who die, will die

fter a certain number of days, and this number of days of delay

o death from the moment of removed (isolation) is governed by

he distribution d iso−death . The parameters of d iso−death are defined

ame as in section 2. 

The objective of this experiment is to validate the proposed

robabilistic model. The proposed methodology utilizes the daily

eath data D(t), to estimate the number of infected cases N(t).

hen estimates the R(t) from the estimated N(t). We assume we

ave perfect knowledge of the delay to death distribution, hence

se the same parameters as the simulation, for R(t) estimation. The

ensitivity of this assumption is analysed in the proceeding subsec-

ion. 

The results of this experiment are illustrated in Fig. 3 . In

ig. 3 (b), the simulated death data and the number of infections

re illustrated. Estimation of N(t) from death data is an important
art of the proposed method (As in the case of COVID-19 this is

n unknown because not everyone in the population is tested, nor

veryone shows symptoms when infected). The N(t) values from

he model, closely agrees with the true N(t) values (from simula-

ion). The R(t) estimation from N(t) is illustrated in Fig. 3 (a). The

stimated R(t) follows a similar pattern to the true R(t) that is sim-

lated, however, there is a consistent under estimation of around

.25 points of R. Furthermore, the R(t) estimation, when done uti-

izing the true N(t) values from the simulation, agrees very much

ith overall model. 

.2. Sensitivity analysis 

The sensitivity of the model is assessed across 3 attributes of

he proposed model: the distribution of delay to death from re-

oved (isolation), the mortality rate and the noise level on the

eath statistics. Furthermore, since the proposed model is depen-

ent on the delay to death, we also assess the ability of the model

o estimate the R, in the case of limited death data. 

.2.1. Model predictions under different death delay distributions 

In Section 3.1 , we assumed the perfect knowledge of the

 iso−death distribution. However, this is a very unlikely assump-

ion, and the knowledge of this distribution would not be avail-

ble until a country has gone through an adequate period of

he pandemic. Therefore, this experiment analyses the sensitiv-

ty of the prediction from the proposed model under different

 iso−death distributions that will be used for R(t) estimation. For the

urpose of this experiment, we utilize the KL-divergence to quan-

ify the difference between two probability distributions. The re-

ults of this experiment are illustrated in Fig. 4 . 

The results in Fig. 4 illustrate that the model estimates show a

imilar trend regardless of the investigated distributions. Further-

ore, the estimated R value is mostly within 0.25 of the true R

alue, when the distribution is a gamma distribution. However,

hen the distribution used in the model is a Gaussian distribu-

ion, the error is much larger compared to when using a gamma

istribution. 

https://github.com/JJJJJamie/r_estimation
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Fig. 8. The variation of R(t) estimation under different gaps from the most recent death data availability. The delay from isolation to death is “assumed” as a gamma 

distribution with mean = 21.8, and shape = 4.94, the noise level on the death data is 5%. 
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3.2.2. Model predictions under different mortality rates and death 

report rates 

The mortality rate of the disease denoted by P d is utilized for

the estimation of R(t) in the proposed methodology. While this

would not be known until the end of the pandemic, there are ini-

tial estimates of this important parameter. The Fig. 5 illustrates the

model performance under different mortality rates. 

The results indicate that, although the mortality rate affects the

number of infected cases in the population (N(t)), it does not af-

fect the R estimation. This is an important property to enable ro-

bust R estimations when different countries under-report deaths

due to variations in the counting criteria. In such a case where

the deaths are under-reported, the R estimation from the proposed

method is not affected, as long as the death reporting mecha-

nism stays consistent throughout the period of R-estimation. If the

death reporting mechanism changes over the period of the pan-

demic for a given country, this should be incorporated within the
model. 
.2.3. Model predictions under different noise levels on the death 

tatistics 

Another issue associated with using the daily death statistics

s that the death curve is not always smooth, and there are daily

ariations. The Fig. 6 illustrate the effect of noise on the daily death

tatistics on the final R estimation. The results illustrate that unless

here is a significant amount of noise on the daily death statistics

e.g. 20%), the R estimation is not significantly affected. 

.2.4. On the gap between death data availability and accuracy of 

he R estimation 

The complete death data is available for a disease, only after the

nd of a pandemic. However, in the case of a pandemic such as

OVID-19, where governments have to consistently take suppres-

ion measures during the pandemic, the ability to estimate R dur-

ng the pandemic is extremely important as a measure of disease

pread. The proposed model uses the daily death statistics for es-
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imation of R(t), and due to the dynamics of the disease there is

 delay to death of an infected person. Therefore, there is a gap

hen R value can be estimated with a reasonable accuracy, and

he most recent availability of death statistics. 

We illustrate the variation of R(t) estimation under different

aps between the most recent death data availability and the R(t)

stimation, in Fig. 7 . According to Fig. 7 the R estimation does not

hange very much, if we have the perfect knowledge of the under-

ying d death distribution and when there is no noise on the death

ata. It should be noted that due to the lack of complete N(t) esti-

ations from the available death data, the curve will always bend

owards the end. 

The effect under a different distribution and under noise is il-

ustrated in Fig. 8 , which suggests that R estimation will be af-

ected by these changes. However, the variation of R estimation is

till largely preserved, and the oscillations on the R estimation can

asily overcome through a smoothing operation. 

.3. Application of model for different countries 

In this subsection we present the R-estimation results for two

ifferent countries, using the proposed method. We have se-

ected Italy and Spain, the countries which have nearly progressed

hrough the pandemic. We have used the most up to date death

tatistics (as of writing of this paper) for this purpose. The results

re presented in Fig. 9 for Italy, and Fig. 10 for Spain. 

The Fig. 9 (a) illustrates the estimated N(t) under different dis-

ribution of d iso−death , along with the number of confirmed cases in

taly. As illustrated, gamma distribution with a mean of 12.8 days

losely agrees with the shape of the number of reported cases, and

lso exhibits a shift of around 10 to 14 days to be in line with a de-

ay associated with being reported due to intensifying symptoms.

he R estimations from the method shows a peak R value of 2.8 to

 gradually decreasing R value. The current R value in Italy is esti-

ated from the method to be between 0.5 and 1. A similar pattern

s also observed for Spain. 

. Discussion 

The aim of this paper is to utilize the publicly available data

o measure the spread of disease by calculating the effective re-

roduction number of the disease, especially during the pandemic.

uring the early stages of a pandemic, only a limited amount of

ata is made available. However, knowing the reproduction num-

er throughout the pandemic is of significant essence to make

ublic health decisions. In the current pandemic of COVID-19, the

umber of confirmed cases and the number of deaths is reported

y most countries. However, the number of confirmed cases is sig-

ificantly dependent on the testing strategy employed by public

ealth bodies of a country, and cannot be used as a useful statistic

f the underlying number of infectious people. Therefore, at early

tages of a pandemic, the methodology uses the daily deaths as the

nly statistic and work backwards to calculate the effective repro-

uction number. 

.1. Performance of the model 

The performance of the proposed probabilistic model is es-

imated through simulations for validation purposes. The results

resented in Section 3.2 , suggests that the proposed method is ro-

ust against variations in delay to death distribution and the noise

evel in death statistics. It should also be noted that, when death

ata is available up to a given date, the model can accurately pre-

ict R up to around 40 days before depending on the accuracy of

ssumed death delay distribution and the noise level of death data.

his is mostly stemming from the fact that deaths are delayed by
 significant number of days from the date of first infection. How-

ver, as illustrated in Figs. 7 and 8 the R can be estimated for up to

4 days before the last date for which death data is available, with

 reasonable accuracy. The R estimation, however, tends to oscil-

ate between 40 days and 14 days, which can be overcome through

moothing as shown in Fig. 8 . 

Most importantly, R estimation from this method is not affected

y the mortality rate (or death rate) assumed for the disease. This

s illustrated in Fig. 5 . The implications of results in Fig. 5 , also re-

ates to the death report rate variation across countries. This is be-

ause, variation in death rate simulations is synonymous with the

ifferent death report rates too. Different countries count the num-

er of deaths with different logics, E.g. some countries may count

nly the deaths of those with confirmed positive test for COVID-19

ho die only in hospitals but disregard the deaths in care homes.

owever, as long as the counting logic is consistent, throughout

he reporting period, the death report rate will be constant, and

hus enabling the estimation R, which is not affected by the death

ate (or death report rate). 

The methodology utilizes existing studies about the delay be-

ween infection and onset of symptoms and the delay between on-

et of symptoms and death. However, these studies are still emerg-

ng and show significant variations among the distributions used

14] , but has a strong correlation on the mean values. 

.2. Applications of the model for COVID-19 analysis in different 

ountries 

The results in Figs. 9 and 10 demonstrate the model perfor-

ance on real death statistics from Italy and Spain, respectively. A

uitable delay to death distribution was found by trying to match a

(t) estimation that is similar in variation, but which is shifted by

 certain reporting delay ( Figs. 9 (a) and 10 (a)). The R estimation

or Italy and Spain has been gradually decreasing during months

f March and April and is currently (at the time of writing the pa-

er) stable at a value between 0.5 and 1, with a mean estimation

f around 0.8. The starting level of R, for both Italy and Spain was

round 2.7 (i.e. before any suppression measure was taken). This

stimation is in consistent with the initial estimates of R provided

n [15] , which suggested for Italy the mean R value was 2.3, and

or Spain it was 3.11. 

The R value is one of the most important metrics of the spread

f infectious diseases. The knowledge of R enables public health

uthorities to make important decisions such as implementation

f suppression policies, and appropriate timing of such policies.

or example, in the control of COVID-19 spread, most countries

ave implemented suppression mechanisms such as school clo-

ures, travel bans and lockdowns. The correct timing of such mea-

ures is of utmost importance, and the knowledge of the level of

pread of the disease is the most important criteria to implement

he stringent measures, and for the subsequent easing of such sup-

ression methods. The availability of an alternative model such as

he proposed, will assist the epidemiologists and policy makers to

nderstand the spread of the disease, as well as a sanity check

echanism on the estimations of R values based on SIR models. 

Another important application of the proposed methodology is

he ability of it to predict number of infectious people in a given

ountry (N(t)). This is particularly important for the case of COVID-

9, because a significant proportion of those who are infected are

symptotic. 

.3. Challenges of practical application of the model for COVID-19 

nalysis 

The proposed methodology is dependent on the number of

eaths reported and made public. However, in the case of COVID-
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Fig. 9. The R estimations for Italy from the proposed method. 
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19 and the deaths are delayed according to d death . Therefore, to cal-

culate the N(t) at current date, the number of deaths of the future

day needs to be predicted. In the case of COVID-19, a person can

die up to 42 days from the onset of symptoms (95% Confidence In-

terval). However, predicting the future deaths of a given country is

a very challenging task. This is because, the number of deaths is

dependent on many factors such as, the suppression policies em-

ployed in the country and the healthcare capacity. Therefore, to

calculate the most up-to-date R we would need a suitable machine

learning model to predict the deaths in the future. State-of-the-art

machine learning techniques could significantly contribute to this

task. 

The proposed methodology assumes a base mortality rate for

the purpose of estimation of R. We present the results for three

values of mortality rates, 0.0025, 0.03, (consistent with different

studies [ 16 , 17 ]) and 0.1 as an extreme case. However, when the

pandemic causes the healthcare resources to be exhausted, the
ortality rate can be expected to be higher, such as 0.12 [18] .

herefore, the variation of mortality rate within the period of pan-

emic need to be quantified to be used within the model. This

gain is an important, yet challenging research problem that need

o be solved. 

Another important consideration is, that different countries

ave different methods of counting the number of COVID-19 re-

ated deaths. For example, until 29th of April, the UK government

onsidered COVID-19 related deaths that happen only in Hospi-

als, to then change their policy to include deaths in care homes

oo. Such a change in policy causes the number of deaths re-

orted to significantly vary with time. While this can easily be

dopted within the proposed model by a simple change in the

eath rate, calculating the dynamic death report rate of a country

an be challenging. This is especially a problem during the early

tages of a pandemic when the government policies are rapidly

hanging. 
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Fig. 10. The R estimations for Italy from the proposed method. 

5

 

e  

d  

i  

l  

t  

i  

a  

f  

f  

t  

s  

t  

d  

m  

w  

u  

t  

m  

f  

c  

f  

s

D

 

 

 

 

A

 

w  

f

 

R  
.Conclusion 

This paper presents a probabilistic methodology to estimate the

ffective reproduction number (R) of a given country, using the

aily statistics of death. The methodology utilizes existing stud-

es on COVID-19 related to the probability distributions of the de-

ay between infection and onset of symptoms, and the delay be-

ween onset of symptoms and death. The proposed methodology

s validated by comparing against simulated disease spread using

 SIR simulation. The R-estimates from the proposed method was

ound to be robust against different distributions of delay to death

rom the onset of symptoms, and against different noise levels on

he death statistics. The R estimates from the proposed method is

hown to be constant against different death report rates or mor-

ality rate of the disease, and the model can be useful up to 14

ays before the last available death data. The R-estimates of the

odel for Italy and Spain shows a consistent pattern and agrees

ith estimates from emerging studies. The proposed method is

seful to calculatethe effective reproduction number. Most impor-

antly, since scientists are still learning the dynamics of the virus, a

ethodology that is proposed here provides a useful model for in-

orming policy decisions. Furthermore, a data-driven methodology

an be an alternative avenue to analytical model driven approaches

m

or estimation of R, thus serving as an additional analysis tool to

tudy the spread of COVID-19. 
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